Analogies between the Crossing Number and the Tangle Crossing Number
نویسندگان
چکیده
منابع مشابه
Analogies between the crossing number and the tangle crossing number
Tanglegrams are special graphs that consist of a pair of rooted binary trees with the same number of leaves, and a perfect matching between the two leaf-sets. These objects are of use in phylogenetics and are represented with straightline drawings where the leaves of the two plane binary trees are on two parallel lines and only the matching edges can cross. The tangle crossing number of a tangl...
متن کاملCrossing number, pair-crossing number, and expansion
The crossing number crðGÞ of a graph G is the minimum possible number of edge crossings in a drawing of G in the plane, while the pair-crossing number pcrðGÞ is the smallest number of pairs of edges that cross in a drawing of G in the plane. While crðGÞXpcrðGÞ holds trivially, it is not known whether a strict inequality can ever occur (this question was raised by Mohar and Pach and Tóth). We ai...
متن کاملOdd Crossing Number and Crossing Number Are Not the Same
The crossing number of a graph is the minimum number of edge intersections in a plane drawing of a graph, where each intersection is counted separately. If instead we count the number of pairs of edges that intersect an odd number of times, we obtain the odd crossing number. We show that there is a graph for which these two concepts differ, answering a well-known open question on crossing numbe...
متن کاملOdd Crossing Number Is Not Crossing Number
The crossing number of a graph is the minimum number of edge intersections in a plane drawing of a graph, where each intersection is counted separately. If instead we count the number of pairs of edges that intersect an odd number of times, we obtain the odd crossing number. We show that there is a graph for which these two concepts differ, answering a well-known open question on crossing numbe...
متن کاملMETAHEURISTIC ALGORITHMS FOR MINIMUM CROSSING NUMBER PROBLEM
This paper presents the application of metaheuristic methods to the minimum crossing number problem for the first time. These algorithms including particle swarm optimization, improved ray optimization, colliding bodies optimization and enhanced colliding bodies optimization. For each method, a pseudo code is provided. The crossing number problem is NP-hard and has important applications in eng...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2018
ISSN: 1077-8926
DOI: 10.37236/7581